Autos

Unraveling the relation between carbon emission and carbon footprint: A literature review and framework for sustainable transportation – Nature.com


  • IPCC. Climate change 2022: Mitigation of climate change. https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf (2022).

  • Cai, B. F. et al. Estimates of China’s national and regional transport sector CO2 emissions in 2007. Energy Policy 41, 474–483 (2012).


    Google Scholar
     

  • Zhang, L., Long, R., Chen, H. & Geng, J. A review of China’s road traffic carbon emissions. J. Cleaner Prod. 207, 569–581 (2019).


    Google Scholar
     

  • Wimbadi, R. W., Djalante, R. & Mori, A. Urban experiments with public transport for low carbon mobility transitions in cities: A systematic literature review (1990-2020). Sustainable Cities Soc. 72, 103023 (2021).


    Google Scholar
     

  • IEA. Greenhouse gas emissions from energy. https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy (2023).

  • Onat, N. C. et al. How eco-efficient are electric vehicles across Europe? A regionalized life cycle assessment-based eco-efficiency analysis. Sustainable Dev. 29, 941–956 (2021).


    Google Scholar
     

  • Piecyk, M. I. & McKinnon, A. C. Forecasting the carbon footprint of road freight transport in 2020. Int. J. Prod. Econ. 128, 31–42 (2010).


    Google Scholar
     

  • Elhedhli, S. & Merrick, R. Green supply chain network design to reduce carbon emissions. Transp. Res. Part D Transp. Environ. 17, 370–379 (2012).


    Google Scholar
     

  • Li, H. M., Qiu, P. & Wang, J. How can shared bikes reduce carbon emissions in the real world? A theoretical analysis and its policy implications. Int. J. Global Warming 25, 242–256 (2021).


    Google Scholar
     

  • Qi, T. & Chen, L. H. Carsharing: Mitigation strategy for transport-related carbon footprint. Mitigation Adapt. Strategies Global Change 25, 791–818 (2020).


    Google Scholar
     

  • Liu, J., Tian, J. Y., Lyu, W. & Yu, Y. T. The impact of COVID-19 on reducing carbon emissions: From the angle of international student mobility. Appl. Energy 317, 119136 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agbulut, U. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustainable. Prod. Consumption 29, 141–157 (2022).


    Google Scholar
     

  • Coskun, C. & Oktay, Z. Carbon footprint prediction of vehicle usage in Turkey. Greenhouse Cases Sci. Tech. 10, 736–758 (2020).

    CAS 

    Google Scholar
     

  • Tang, N. W., Apte, J. S., Martien, P. T. & Kirchstetter, T. W. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California. Atmos. Environ. 115, 295–303 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Krezo, S., Mirza, O., Kaewunruen, S. & Sussman, J. M. Evaluation of CO2 emissions from railway resurfacing maintenance activities. Transp. Res. Part D Transp. Environ. 65, 458–465 (2018).


    Google Scholar
     

  • Xiao, G. N., Lu, Q. W., Ni, A. N. & Zhang, C. Y. Research on carbon emissions of public bikes based on the life cycle theory. Transp. Lett. 15, 278–295 (2022).


    Google Scholar
     

  • Wang, R. J., Song, Y. Y., Xu, H. L., Li, Y. & Liu, J. Life cycle assessment of energy consumption and CO2 emission from HEV, PHEV and BEV for China in the past, present and future. Energies 15, 6853 (2022).

    CAS 

    Google Scholar
     

  • Miyoshi, C. & Mason, K. J. The damage cost of carbon dioxide emissions produced by passengers on airport surface access: The case of Manchester Airport. J. Transp. Geogr. 28, 137–143 (2013).


    Google Scholar
     

  • Wang, S. S., Wang, H., Xie, P. Y. & Chen, X. D. Life-cycle assessment of carbon footprint of bike-share and bus systems in campus transit. Sustainability 13, 158 (2021).

    CAS 

    Google Scholar
     

  • Wild, P. Recommendations for a future global CO2-calculation standard for transport and logistics. Transp. Res. Part D Transp. Environ. 100, 103024 (2021).


    Google Scholar
     

  • Gialos, A., Zeimpekis, V., Madas, M. & Papageorgiou, K. Calculation and Assessment of CO2e Emissions in Road Freight Transportation: A Greek Case Study. Sustainability 14, 10724 (2022).

    CAS 

    Google Scholar
     

  • Yaacob, N. F. F., Yazid, M. R. M., Maulud, K. N. A. & Basri, N. E. A. A review of the measurement method, analysis and implementation policy of carbon dioxide emission from transportation. Sustainability 12, 5873 (2020).


    Google Scholar
     

  • Isik, M., Sarica, K. & Ari, I. Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transp. Policy 97, 210–219 (2020).


    Google Scholar
     

  • Pandey, D., Agrawal, M. & Pandey, J. S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 178, 135–160 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Engo, J. Decoupling analysis of CO2 emissions from transport sector in Cameroon. Sustainable Cities Soc. 51, 101732 (2019).


    Google Scholar
     

  • Matuštík, J. & Kočí, V. What is a footprint? A conceptual analysis of environmental footprint indicators. J. Cleaner Prod. 285, 124833 (2021).


    Google Scholar
     

  • Wang, W. W., Zhang, M. & Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 36, 5909–5915 (2011).


    Google Scholar
     

  • Ashik, F. R., Rahman, M. H. & Kamruzzaman, M. Investigating the impacts of transit-oriented development on transport-related CO2 emissions. Transp. Res. Part D Transp. Environ. 105, 103227 (2022).


    Google Scholar
     

  • Mafi, S. et al. Developing local driving cycle for accurate vehicular CO2 monitoring: A case study of Tehran. J. Cleaner Prod. 336, 130176 (2022).

    CAS 

    Google Scholar
     

  • Cansiz, O. F., Unsalan, K. & Unes, F. Prediction of CO2 emission in transportation sector by computational intelligence techniques. Int. J. Global Warming 27, 271–283 (2022).


    Google Scholar
     

  • van Ewijk, S. & Hoekman, P. Emission reduction potentials for academic conference travel. J. Ind. Ecol. 25, 778–788 (2021).


    Google Scholar
     

  • Waring, T., Teisl, M., Manandhar, E. & Anderson, M. On the travel emissions of sustainability science research. Sustainability 6, 2718–2735 (2014).


    Google Scholar
     

  • Teixeira, A. C. R. & Sodre, J. R. Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transp. Res. Part D Transp. Environ. 59, 375–384 (2018).


    Google Scholar
     

  • Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ British Medical J. 372, n71 (2021).


    Google Scholar
     

  • Tang, J. et al. Automatic number plate recognition (ANPR) in smart cities: A systematic review on technological advancements and application cases. Cities 129, 103833 (2022).


    Google Scholar
     

  • CEN. EN 16258:2012 Methodology for calculation and declaration of energy consumption and GHG emissions of transport services (freight and passengers). (2012).

  • Schipper, L. Determinants of automobile use and energy-consumption in OECD countries. Annu. Rev. Energy Env. 20, 325–386 (1995).


    Google Scholar
     

  • Saunders, C. & Barber, A. Carbon footprints, life cycle analysis, food miles: Global trade trends and market issues. Political Sci. 60, 73–88 (2008).


    Google Scholar
     

  • Gebhardt, L., Ehrenberger, S., Wolf, C. & Cyganski, R. Can shared E-scooters reduce CO2 emissions by substituting car trips in Germany? Transp. Res. Part D Transp. Environ. 109, 103328 (2022).


    Google Scholar
     

  • Tian, X. et al. A bibliometric analysis on trends and characters of carbon emissions from transport sector. Transp. Res. Part D Transp. Environ. 59, 1–10 (2018).


    Google Scholar
     

  • Lv, Q., Liu, H. B., Yang, D. Y. & Liu, H. Effects of urbanization on freight transport carbon emissions in China: Common characteristics and regional disparity. J. Cleaner Prod. 211, 481–489 (2019).


    Google Scholar
     

  • Lin, J. Y., Li, H. M., Huang, W., Xu, W. T. & Cheng, S. H. A carbon footprint of high-speed railways in China: A case study of the Beijing-Shanghai line. J. Ind. Ecol. 23, 869–878 (2019).


    Google Scholar
     

  • Li, W. X., Bao, L., Li, Y., Si, H. Y. & Li, Y. M. Assessing the transition to low-carbon urban transport: A global comparison. Resour. Conserv. Recycl. 180, 106179 (2022).

    CAS 

    Google Scholar
     

  • Cao, X. S. & Yang, W. Y. Examining the effects of the built environment and residential self-selection on commuting trips and the related CO2 emissions: An empirical study in Guangzhou, China. Transp. Res. Part D Transp. Environ. 52, 480–494 (2017).


    Google Scholar
     

  • Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, X. & Wang, X. J. Effects of carbon emission reduction policies on transportation mode selections with stochastic demand. Transp. Res. Part E Logist. Transp. Rev. 90, 196–205 (2016).


    Google Scholar
     

  • Perez, J., Lumbreras, J., Rodriguez, E. & Vedrenne, M. A methodology for estimating the carbon footprint of waste collection vehicles under different scenarios: Application to Madrid. Transp. Res. Part D Transp. Environ. 52, 156–171 (2017).


    Google Scholar
     

  • Xiong, S. Q., Wang, Y. S., Bai, B. & Ma, X. M. A hybrid life cycle assessment of the large-scale application of electric vehicles. Energy 216, 119314 (2021).

    CAS 

    Google Scholar
     

  • Li, G. J., Luo, T. X. S. & Song, Y. Q. Climate change mitigation efficiency of electric vehicle charging infrastructure in China: From the perspective of energy transition and circular economy. Resour. Conserv. Recycl. 179, 106048 (2022).


    Google Scholar
     

  • Chang, B. & Kendall, A. Life cycle greenhouse gas assessment of infrastructure construction for California’s high-speed rail system. Transp. Res. Part D Transp. Environ. 16, 429–434 (2011).


    Google Scholar
     

  • Vajjarapu, H. & Verma, A. Understanding the mitigation potential of sustainable urban transport measures across income and gender groups. J. Transp. Geogr. 102, 103383 (2022).


    Google Scholar
     

  • Zhou, X. et al. Identifying spatiotemporal characteristics and driving factors for road traffic CO2 emissions. Sci. Total Environ. 834, 155270 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Waltho, C., Elhedhli, S. & Gzara, F. Green supply chain network design: A review focused on policy adoption and emission quantification. Int. J. Prod. Econ. 208, 305–318 (2019).


    Google Scholar
     

  • Lo, P. L., Martini, G., Porta, F. & Scotti, D. The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy). Transp. Policy 91, 108–119 (2020).


    Google Scholar
     

  • Morfeldt, J., Kurland, S. D. & Johansson, D. J. A. Carbon footprint impacts of banning cars with internal combustion engines. Transp. Res. Part D Transp. Environ. 95, 102807 (2021).


    Google Scholar
     

  • Li, R. R., Li, L. J. & Wang, Q. The impact of energy efficiency on carbon emissions: Evidence from the transportation sector in Chinese 30 provinces. Sustainable Cities Soc. 82, 103880 (2022).


    Google Scholar
     

  • He, D. Q. et al. Energy use of, and CO2 emissions from China’s urban passenger transportation sector – Carbon mitigation scenarios upon the transportation mode choices. Transp. Res. Part A Policy Pract. 53, 53–67 (2013).


    Google Scholar
     

  • Juvvala, R. & Sarmah, S. P. Evaluation of policy options supporting electric vehicles in city logistics: A case study. Sustainable Cities Soc. 74, 103209 (2021).


    Google Scholar
     

  • Mao, R. C. et al. Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China. J. Cleaner Prod. 166, 40–48 (2017).


    Google Scholar
     

  • Liu, M. Z. et al. Carbon Emission and Structure Analysis of Transport Industry Based on Input-output Method: China as an Example. Sustainable. Prod. Consumption 33, 168–188 (2022).

    CAS 

    Google Scholar
     

  • Garcia, A., Monsalve-Serrano, J., Sari, R. L. & Tripathi, S. Life cycle CO2 footprint reduction comparison of hybrid and electric buses for bus transit networks. Appl. Energy 308, 118354 (2022).

    CAS 

    Google Scholar
     

  • Gosavi, A., Marley, R. J. & Afari, J. A. Airport location for smart and sustainable living: A model and a case study of rural Missouri, US. Sustainable Cities Soc. 83, 103928 (2022).


    Google Scholar
     

  • Abduljabbar, R. L., Liyanage, S. & Dia, H. The role of micro-mobility in shaping sustainable cities: A systematic literature review. Transp. Res. Part D Transp. Environ. 92, 102734 (2021).


    Google Scholar
     

  • Barla, P., Miranda-Moreno, L. F. & Lee-Gosselin, M. Urban travel CO2 emissions and land use: A case study for Quebec City. Transp. Res. Part D Transp. Environ. 16, 423–428 (2011).


    Google Scholar
     

  • Yu, R. J., Cong, L. Z., Hui, Y. J., Zhao, D. C. & Yu, B. Y. Life cycle CO2 emissions for the new energy vehicles in China drawing on the reshaped survival pattern. Sci. Total Environ. 826, 154102 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Aguilera, A. & Voisin, M. Urban form, commuting patterns and CO2 emissions: What differences between the municipality’s residents and its jobs? Transp. Res. Part A Policy Pract. 69, 243–251 (2014).


    Google Scholar
     

  • Das Gupta, M. Carbon footprint from road transport use in Kolkata city. Transp. Res. Part D Transp. Environ. 32, 397–410 (2014).


    Google Scholar
     

  • Liu, Z. L., Ma, J. & Chai, Y. W. Neighborhood-scale urban form, travel behavior, and CO2 emissions in Beijing: Implications for low-carbon urban planning. Urban Geogr. 38, 381–400 (2017).


    Google Scholar
     

  • Mishalani, R. G., Goel, P. K., Landgraf, A. J., Westra, A. M. & Zhou, D. K. Passenger travel CO2 emissions in US urbanized areas: Multi-sourced data, impacts of influencing factors, and policy implications. Transp. Policy 36, 231–241 (2014).


    Google Scholar
     

  • Zhang, S. J. et al. Real-world fuel consumption and CO2 emissions of urban public buses in Beijing. Appl. Energy 113, 1645–1655 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Bhandari, K., Advani, M., Panda, P. & Gangopadhyay, S. Consideration of access and egress trips in carbon footprint estimation of public transport trips: Case study of Delhi. J. Cleaner Prod. 85, 234–240 (2014).


    Google Scholar
     

  • Chester, M. V. & Horvath, A. Environmental assessment of passenger transportation should include infrastructure and supply chains. Environ. Res. Lett. 4, 024008 (2009).

    ADS 

    Google Scholar
     

  • Wong, E. Y. C., Ho, D. C. K., So, S., Tsang, C. W. & Chan, E. M. H. Life Cycle Assessment of Electric Vehicles and Hydrogen Fuel Cell Vehicles Using the GREET Model-A Comparative Study. Sustainability 13, 4872 (2021).

    CAS 

    Google Scholar
     

  • Sobrino, N. & Arce, R. Understanding per-trip commuting CO2 emissions: A case study of the Technical University of Madrid. Transp. Res. Part D Transp. Environ. 96, 102895 (2021).


    Google Scholar
     

  • Logan, K. G., Nelson, J. D., Brand, C. & Hastings, A. Phasing in electric vehicles: Does policy focusing on operating emission achieve net zero emissions reduction objectives? Transp. Res. Part A Policy Pract. 152, 100–114 (2021).


    Google Scholar
     

  • Loo, B. P. Y. & Li, L. Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport. Energy Policy 50, 464–476 (2012).


    Google Scholar
     

  • Kissinger, M. & Reznik, A. Detailed urban analysis of commute-related GHG emissions to guide urban mitigation measures. Environ. Impact Assess. Rev. 76, 26–35 (2019).


    Google Scholar
     

  • Aggarwal, P. 2 degrees C target, India’s climate action plan and urban transport sector. Travel Behav. Soc. 6, 110–116 (2017).


    Google Scholar
     

  • Peng, T. D., Zhou, S., Yuan, Z. Y. & Ou, X. M. Life cycle greenhouse gas analysis of multiple vehicle fuel pathways in China. Sustainability 9, 2183 (2017).


    Google Scholar
     

  • Ao, Y., Yang, D., Chen, C. & Wang, Y. Effects of rural built environment on travel-related CO2 emissions considering travel attitudes. Transp. Res. Part D Transp. Environ. 73, 187–204 (2019).


    Google Scholar
     

  • Yang, L., Wang, Y., Han, S. & Liu, Y. Urban transport carbon dioxide (CO2) emissions by commuters in rapidly developing Cities: The comparative study of Beijing and Xi’an in China. Transp. Res. Part D Transp. Environ. 68, 65–83 (2019).


    Google Scholar
     

  • Reichert, A., Holz-Rau, C. & Scheiner, J. GHG emissions in daily travel and long-distance travel in Germany – Social and spatial correlates. Transp. Res. Part D Transp. Environ. 49, 25–43 (2016).


    Google Scholar
     

  • Sajid, M. J., Cao, Q. R. & Kang, W. Transport sector carbon linkages of EU’s top seven emitters. Transp. Policy 80, 24–38 (2019).


    Google Scholar
     

  • Cui, S. H. et al. Carbon footprint analysis of the Bus Rapid Transit (BRT) system: A case study of Xiamen City. Int. J. Sustainable Dev. World Ecol. 17, 329–337 (2010).


    Google Scholar
     

  • Weidema, B. P., Thrane, M., Christensen, P., Schmidt, J. & Lokke, S. Carbon footprint – A catalyst for life cycle assessment? J. Ind. Ecol. 12, 3–6 (2008).


    Google Scholar
     

  • van Eck, N. J. & Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010).

    PubMed 

    Google Scholar
     

  • Yang, Y., Wang, C. & Liu, W. Urban daily travel carbon emissions accounting and mitigation potential analysis using surveyed individual data. J. Cleaner Prod. 192, 821–834 (2018).


    Google Scholar
     

  • Guo, L., Yang, S., Zhang, Q. H., Zhou, L. Y. & He, H. Examining the nonlinear and synergistic effects of multidimensional elements on commuting carbon emissions: A case study in Wuhan, China. Int. J. Environ. Res. Public Health 20, 1616 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, S., Diao, M. & Feng, C.-C. Individual transport emissions and the built environment: A structural equation modelling approach. Transp. Res. Part A Policy Pract. 92, 206–219 (2016).


    Google Scholar
     

  • Wang, Y., Yang, L., Han, S., Li, C. & Ramachandra, T. V. Urban CO2 emissions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries. Mitigation Adapt. Strategies Global Change 22, 993–1019 (2017).


    Google Scholar
     

  • Rose, L. et al. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city. Energy Policy 52, 453–461 (2013).

    CAS 

    Google Scholar
     



  • READ SOURCE

    This website uses cookies. By continuing to use this site, you accept our use of cookies.